Mechanism of Filament Nucleation and Branch Stability Revealed by the Structure of the Arp2/3 Complex at Actin Branch Junctions
نویسندگان
چکیده
Actin branch junctions are conserved cytoskeletal elements critical for the generation of protrusive force during actin polymerization-driven cellular motility. Assembly of actin branch junctions requires the Arp2/3 complex, upon activation, to initiate a new actin (daughter) filament branch from the side of an existing (mother) filament, leading to the formation of a dendritic actin network with the fast growing (barbed) ends facing the direction of movement. Using genetic labeling and electron microscopy, we have determined the structural organization of actin branch junctions assembled in vitro with 1-nm precision. We show here that the activators of the Arp2/3 complex, except cortactin, dissociate after branch formation. The Arp2/3 complex associates with the mother filament through a comprehensive network of interactions, with the long axis of the complex aligned nearly perpendicular to the mother filament. The actin-related proteins, Arp2 and Arp3, are positioned with their barbed ends facing the direction of daughter filament growth. This subunit map brings direct structural insights into the mechanism of assembly and mechanical stability of actin branch junctions.
منابع مشابه
The structural basis of actin filament branching by the Arp2/3 complex
The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomogr...
متن کاملThree-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation
During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations...
متن کاملAn actin-filament-binding interface on the Arp2/3 complex is critical for nucleation and branch stability.
The Arp2/3 complex polymerizes new actin filaments from the sides of existing filaments, forming Y-branched networks that are critical for actin-mediated force generation. Binding of the Arp2/3 complex to the sides of actin filaments is therefore central to its actin-nucleating and branching activities. Although a model of the Arp2/3 complex in filament branches has been proposed based on elect...
متن کاملPathway of actin filament branch formation by Arp2/3 complex.
A spectroscopic assay using pyrene-labeled fission yeast Arp2/3 complex revealed that the complex binds to and dissociates from actin filaments extremely slowly with or without the nucleation-promoting factor fission yeast Wsp1-VCA. Wsp1-VCA binds both Arp2/3 complex and actin monomers with high affinity. These two ligands have only modest impacts on the interaction of the other ligand with VCA...
متن کاملArp bent out of shape
iochemical and kinetic studies have failed to provide a unified view on how the Arp2/3 complex nucleates actin filaments. Does the complex, which mediates actin filament nucleation and branch formation at the leading edge of motile cells, bind to the side of an older actin filament, or does it become incorporated into that filament? B Structural studies now add a new dimension to the discourse,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2005